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Abstract. CO2 monitoring networks with low-cost and medium-precision sensors (LCSs) have become an exploratory

direction for CO2 observation under complex emission conditions in cities. Yet the performance of such LCS after20

deployment in the field faces significant challenges due to environmental impacts (e.g., temperature and humidity) and

long-term drifts due to sensor degradation (e.g., the light source). Here, we conducted 30 months of co-located

observations using LCS instruments (named SENSE-IAP) with a reference instrument (Picarro) to study the long-term

performance of the LCSs under field conditions, which is essential for the correction and validation of mid-low cost CO2

observation networks. The environmental correction system we developed effectively corrected the impact of daily25

environmental changes, which reduced the root mean square errors (RMSE) from 5.9±1.2 ppm to 1.6±0.5 ppm for

SENSE-IAP. The corrections remained robust against seasonal environmental variations, and the daily RMSE was generally

1-3 ppm over the 30 months of observation. Long-term drifts, commonly occurring in LCS, resulted in biases reaching up to

27.9 ppm over two years. Furthermore, the seasonal drift cycle contributed an RMSE of up to 25 ppm after six months of the

deployment. While the environmental correction system could not correct these errors, a linear interpolation method30

effectively corrected the long-term drift. The long-term drift correction significantly decreased the RMSE to 2.4 ± 0.2 ppm

over the 30-month observation. To improve the accuracy of high-density CO2 networks utilizing LCSs, we recommend that

the calibration frequency is better within three months and not exceed six months, with optimal calibration performed during

winter and summer to maintain daily accuracy within 5 ppm. These findings suggest that SENSE-IAP instruments can be
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deployed for a long period without the need for taking back to re-calibrate in the laboratory or frequent standard gas35

calibration in the field, thereby significantly reducing time, labor, and financial costs.
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1. Introduction

Urban CO2 emissions demonstrate complex spatial and temporal variability (Wada et al., 2011), influenced by diverse40

emission sources (Gurney et al., 2012; Kellett et al., 2013), meteorological factors (Grimmond et al., 2002; Lateb et al., 2016)

and potential misinterpretation from biogenic fluxes (Miles et al., 2021). These complexities pose significant challenges in

accurately capturing and interpreting the intricate changes in urban CO2 concentrations, highlighting the necessity for more

advanced and comprehensive monitoring solutions.

Recent advancements in medium-precision carbon monitoring technologies have made establishing high-density,45

low-cost, and medium-precision sensor (LCS) networks a viable and competitive strategy (Müller et al., 2020; Shusterman et

al., 2018). This approach effectively addresses the challenges associated with the variability of CO2 in urban environments,

which are characterized by complex emission sources, vegetation carbon sinks, and dynamic meteorological conditions. In

contrast to high-precision instruments like Picarro or ABB-LGR, LCSs offer an accuracy range of 1-10 ppm and are more

cost-effective, with prices reduced by more than an order of magnitude (5-15 thousand USD). This cost efficiency enables50

large-scale deployment, making LCS an attractive option for comprehensive urban CO2 monitoring (Lopez-Coto et al., 2017;

Turner et al., 2016; Wu et al., 2016; Zeng et al., 2021).

While cost-effective, low-cost non-dispersive infrared (NDIR) sensors, are sensitive to environmental changes and

often exhibit long-term drifts and abrupt jumps. Noise, environmental sensitivity, and temporal drifts result in raw

measurements from LCS that typically have more significant errors and uncertainties than the accuracy and resolution55

required for urban CO2 monitoring. Consequently, the accuracy of such sensors generally depends on the correction methods

that account for factors such as temperature, humidity, and pressure.

Currently, several cities have established high-density CO2 monitoring networks utilizing LCS. For instance, the

SenseAir LP8 sensor, with a raw accuracy of ±50 ppm (SenseAir: LP8 Product Sheet, 2019), and the Vaisala CarboCap

GMP343 sensor, with a raw accuracy of ±3ppm+1% reading (Vaisala, 2020), are commonly employed. The Carbosense CO260

sensor network in Switzerland, which uses the LP8 sensor (Müller et al., 2020), achieves an observation accuracy of 8-12

ppm through initial laboratory chamber correction and regular drift calibration via ambient co-location with nearby reference
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instruments. Similarly, the Berkeley Environmental Air-quality and CO2 Network (BEACO2N) in California, USA,

utilizes the GMP343 sensor. After correcting for bias and temporal drift using the in-situ method, the observation accuracy is

approximately 1-4 ppm (Shusterman et al., 2016, 2018), while the reported accuracy improved to 1.6-3.6 ppm after65

temperature correction (Delaria et al., 2021). However, the sensitivities of these instruments to environmental variables are

inconsistent, posing significant challenges in calibrating many LCSs (Bigi et al., 2018; Delaria et al., 2021; Hagan et al.,

2018; Martin et al., 2017). Additionally, compared to the stability of high-precision instruments, LCSs are more susceptible

to temporal drift and fluctuations. To address the above issues, sensors are taken to the laboratory for regular correction or

undergo in situ field calibration using traceable standard gases. These correction processes, while essential, are70

labor-intensive and require substantial time investment.

To support China's dual carbon goals and address the high spatial variability of CO2 concentration in urban areas, the

Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP), established a network of 134 sites using SenseAir

K30 sensor since 2017 (Han et al., 2024). This study presents the correction methods developed for the SenseAir K30

sensors and evaluates the accuracy achievable through the environmental dependence correction method based on laboratory75

simulation. At a field observation site in Beijing, environmentally corrected LCSs were deployed to co-locate with

high-precision Picarro instruments for up to 30 months. By comparing the data with measurements from Picarro instruments,

we gained more profound insights into the long-term performance and long-term drift characteristics of the LCS, as well as

assessed the effectiveness of our long-term drift correction method. Our findings demonstrate that timely long-term drift

correction significantly improved the accuracy of urban CO2 monitoring networks based on LCS and reduced time, labor,80

and money investment. This research provides valuable evidence for optimizing the deployment and maintenance of

LCS-based monitoring networks in urban environments.

2. The application of SenseAir K30 sensor

A multivariate linear regression analysis was used for environmental correction, which can improve the accuracy of the

SenseAir K30 sensor from its initial specification of ±30 ppm ±3 % of reading (SenseAir: K30 products sheets, 2022) to a85

range of 1.7-4.3 ppm (Martin et al., 2017). The environmentally corrected K30 sensor demonstrated reliability and

consistency when compared to higher-quality instruments and standard gas under a controlled indoor environment, with a

root mean square error (RMSE) ranging from 1 to 3 ppm on a monthly scale (Cai et al., 2024). Furthermore, the low-cost

sensor exhibited highly consistent with Picarro system during on-road observations conducted using the same vehicle, with

an RMSE of 3.6 ppm (Liu et al., 2021). In a study by Bao et al., (2020), the sensor was utilized to measure the CO2 vertical90
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profile in the lower troposphere in Hebei Province, China, showing good consistency with traditional gas chromatography

measurements (BAO et al., 2020). Additionally, Cai et al., (2024) applied the low-cost sensor in an industrial park, revealing

a CO2 concentration enhancement of 5-28 ppm within the park compared to a reference site (Cai et al., 2025).

The JJJ network, deployed with low-cost sensors, has provided valuable insights into seasonal variations, urban-rural

differences, and the homology of CO2 and PM2.5 (Han et al., 2024). The low-cost sensors have also proven effective in95

detecting signals related to COVID-19. Continued CO2 measurements in Beijing showed a 15-ppm reduction during the

2020 lockdown period compared to the before and after periods. Similarly, regular on-road CO2 observation in Beijing

before, during, and after COVID-19 lockdown showed a 40–60ppm decrease during COVID-19 lockdown period (Liu et al.,

2021). These applications demonstrate the versatility and reliability of low-cost sensors in capturing both environmental and

anthropogenic influences on atmospheric CO₂ concentrations.100

3. Instrument design and correction methods of SENSE-IAP

The SENSE-IAP instrument integrates three K30 sensors alongside a Bosch BME680 (BME) sensor (BAO et al., 2020;

Liu et al., 2021) , all collected by an updated version of BeagleBone Green Wireless (BBGW). The standard version of

SENSE-IAP instrument also includes a Figaro TGS 2611 sensor for CH₄ detection and a Plantower PMSA003 for PM2.5

measurements. These components are compactly integrated onto a single circuit board and housed within a weatherproof105

enclosure, as illustrated in Fig. 1.

The BME sensor is positioned close to the K30s to simultaneously monitor the temperature (T in ℃), relative humidity

(RH in %), and pressure (P in hpa) of the air mass inside the instrument. This design ensures real-time correction of the

sensor response values, accounting for dynamically changing external environmental conditions and enhancing measurement

accuracy.110
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Figure 1. The layout of sensors in the standard version of SENSE-IAP instrument.

The raw signals from all sensors were collected at a frequency of 2 seconds, with a background noise level of

approximately ±20 ppm. Fig. 2 shows the experimental results of continuously introducing standard gas over 25 hours to

evaluate the instrument’s noise characteristics. As shown in Fig. 2, the Allan deviation (in ppm) decreases with increasing115

integration time. At a 2-second measurement interval, the noise level is 4 ppm, which decreases to approximately 0.2 ppm

for integration times ranging from 2 minutes to 1 hour. However, the Allan deviation increases after 1 hour of integration

time, indicating the presence of drift contributions.
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Figure 2. (a) The raw signals measured continuously over 25 hours from 03:00 on October 15th to 03:00 on October 16th,120

2022. (b) Allan deviation log plots.

In addition to white noise, the raw signals often contain outliers that must be removed through quality control. According

to formula 1, following the 3-sigma principle, the original data points xi collected during the sampling period are treated as

samples. The average value �� of non-missing xi is calculated, along with the standard deviation (SD) of the xi is σ. If |

xi-�� |>4 σ, the data point is identified as an outlier and removed. We adopted the 4σ threshold to strike a balance between125
effectively removing outliers and preserving the natural ranges of variability in the data.

� = � =1
� � � −�� 2�

�− 1
(1)

Subsequently, the raw signals are averaged from a 2-second interval to a 1-minute interval (resample) to reduce

background noise. A 1-minute integration time was chosen as an optimal trade-off between noise reduction and maintaining

sufficient time resolution to track natural variations in CO₂ concentrations accurately. As formula 2, the resampled130

value Yi​ for each minute is calculated as the average of all non-outlier values xj​ within that minute.

� � = � =1
� � ��

�
(2)
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Figure 3. (a) Compared the CO2 at each processing step, (b) Synchronized monitoring of T and RH. (c-f) The scatterplots of

CO2 measurements form LCS and Picarro instrument at different processing steps, including (c) the raw signal in 2-second135

resolution, (d) the values after noise reduction at a 1-minute resolution, (e) the CO2 concentrations after environment

corrections and (f) systematic bias correction.

The correction system we developed substantially improves the accuracy of CO2 measurements through a

comprehensive process that includes outlier removal and noise reduction. Fig. 3 shows the main steps of the correction

system, with the data cleaning method described earlier constituting the initial two steps. As shown in Fig.3 (a), the raw140

signal (blue) undergoes de-specking and denoising (red). However, a noticeable deviation remains between the LCS

measurements and the true value, with a correlation coefficient (r-value) of approximately 0.6 (Fig.3(c-d)). The differences

mainly come from environmental sensitivity and baseline deviations in concentration.

Similar to the correction standards used in high-precision systems, our LCS units are calibrated using standard gas

traceable to the WMO X2007 scale. This calibration adjusts the span and calibrates system bias before deployment. For the145

typical CO2 concentration range (400-700ppm), a concentration-dependent offset (ΔC) exists between the time-averaged

LCS measurements and the standard gas concentration. Since this concentration dependence varies for each K30 sensor,

laboratory corrections are essential for accuracy improvement. Our concentration correction process includes multiple

concentration gradients, ensuring applicability to real-world monitoring scenarios. The fitting parameters of ∆C against the

measured values are determined through regression analysis, enabling precise correction across the operational range.150
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�� = �� − �0 (3)

where, y0 represents the concentration of standard gas or the high-precision reference instrument (Picarro G2301); Ym is

the minute-averaged values from LCSs.

The environmental sensitivity correction of LCS includes T (10-50 °C), RH (10% -90%), and P compensation

correction. This correction is based on sensitivity testing conducted in the laboratory (Martin et al., 2017), with comparisons155

made against Picarro. Each sensor is assigned unique sensitivity parameters through multivariate regression and iteration

analysis.

�� = � �� , �� + � �� , �� + � �� , �� + � �� , �� + � (4)

where, the baseline correction coefficient is ε; the YT, YH, YP, and YC represent the compensation values for the T, RH, P,

and concentration sensitivity, respectively, applied to the minute-averaged CO2 measurement; the aT, aH, and aP are the160

regression coefficients against T, RH and P respectively, while aC is the span correction coefficient against concentration.

Thus, the corrected CO2 can be expressed as:

� = �� − (� �� , �� + � �� , �� + � �� , �� + � �� , �� + �) (5)

The r values between the CO2 corrected in the final two steps and the Picarro measurements are close to 1 (Fig. 3(e-f)).

Additionally, the difference between the environmental correction (pink) and baseline calibration (green) in Fig. 3(a)165

represents the coefficient ε. After applying these correction steps, the accuracy of the LCS measurements improved to 1-4

ppm compared to Picarro (Liu et al., 2021).

Before deployment, the span and system bias of the LCSs were calibrated. However, once deployed to field stations,

LCSs tended to drift on a weekly to monthly scale, necessitating time-dependent drift calibration. We defined Scor as the

starting time of drift and Ecor as the time when the drift slope stabilized or when calibration was required, with Δ= Ecor-Scor.170

ΔCdrift represents the bias between the concentration C measured by the instrument and the standard concentration C0 at Ecor.

Using the formula (6), the drift rate over time (ppm/min) at Ecor is calculated as �� . The ���� is a constant deviation,

representing the difference between the baseline and the standard value before long-term drift occurs (at Scor). This value is

generally considered zero, since system bias has been calibrated before departure. The error at any time between Scor to Ecor

can be calibrated to ����
����� using the following formulas:175

∆������ = ��∆� + ���� (6)

����
����� = � − ∆������ (7)

This integrated instrument with environmental correction and drift correction is named as SENSE-IAP.
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3. Co-located observation system

Our experiment has been conducted since July 2022 at IAP (Beijing-IAP site). Located in a central urban area with high180

population density, the Beijing-IAP site is significantly influenced by traffic emissions.

To evaluate the performance of LCS, we developed a synchronous observation system that compares LCS with

high-precision instruments. This system includes two SENSE-IAP units (numbered pi688 and pi736), each equipped with

three K30 sensors. A cavity ring-down spectrometer (Picarro G2301) was used as the high-precision instrument for CO2

measurements (Picarro G2301 Analyzer Datasheet, 2023). The precision and accuracy of the Picarro instrument are better185

than 0.1 ppm (Yang et al., 2021). At the Beijing-IAP, the Picarro analyzer was calibrated monthly using high-pressure

standard gases provided by the Meteorological Observation Center of the China Meteorological Administration

(MOC/CMA), which are traceable to the World Meteorological Organization (WMO) X2007 scale.

To ensure long-term synchronous observation between the LCSs and Picarro, deployment enables two sets of

instruments measure the same gas mass. This ensures that any differences in observed values only come from the effects of T,190

RH and P as well as the concentration span, all of which can be adjusted through correction methods. The deployment setup

is shown in Fig. 4(b-c).

Ambient air is drawn from outside the window using a pump, the intake connected through a pipe equipped with a

particulate matter filter and a water dryer. A four-way valve splits the gas stream, directing it to both the LCSs and the

Picarro. The instruments were hung on an open window to directly measure the outdoor air and environmental changes,195

which are the same as field-deployed conditions.

Figure 4. (a) Map of the location of Beijing-IAP, (b) the diagram of gas flow design for the synchronous observation system,

(c) the photographs of the instrument installation setup. The source for the basemap used in subplot (a) was from ESRI

(https://server.arcgisonline.com/arcgis/rest/services/World_Topo_Map/MapServer).200
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4. Environmental corrections for field measurements

Fig. 5 shows the results from environment-corrected SENSE-IAP at the Beijing- IAP site, compared with those from

the Picarro system. After approximately two weeks of data collection during both summer and winter, the SENSE_IAP

showed highly consistent results with Picarro, with RMSEs of 1.6 ppm in summer and 1.8 ppm in winter. In contrast, the raw

CO2 concentration data from the SenseAir showed a higher RMSE of 6.2 ppm in summer and 7.0 ppm in winter.205

Furthermore, the effectiveness of environmental correction is evident across different seasons.
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Figure 5: Comparison between hourly CO2 concentrations measured by the SENSE-IAP and Picarro systems at the Beijing

site from July 13th to 27th in 2022 (a-c, g) and January 10th to 24th in 2023 (d-f, h). We compared both the raw CO2 data from

SenseAir (blue) and the environmentally corrected data from SENSE-IAP (red) with that from Picarro (black). The T and210

RH were measured for the environment inside the instrument.

The correction system effectively adjusted the CO2 concentration within the 400-700 ppm measurement range. As

shown in Fig. 5b, during the period from July 16th to 19th, even when the ambient CO2 concentration experienced

significant fluctuations, the instrument showed high consistency with Picarro. The T and RH detected by the BME sensor

were used to monitor the instrument’s internal environment. Notably, in winter mornings, sunrise caused a significant215

temperature increase due to the presence of metal components on the circuit board (Fig. 5f). Our environmental correction

successfully corrected for the temperature dependence, as the deviation between the SenseAir and Picarro showed a strongly

correlated with temperature in both seasons (Fig. S1a). Additionally, the deviation of SenseAir relative to Picarro was

significantly associated with RH in summer (Fig. S1b), and our correction system incorporated humidity, which was related

to ambient temperature. Compared to the raw SenseAir data, the consistency of all six sensors improved markedly, with the220

RMSE decreasing from 5.0±1.0 ppm to 1.3±0.2 ppm in summer and from 6.8±0.8 ppm to 2.0±0.4 ppm in winter (Fig. S2).

Our correction system can preform environmental sensitivity analysis and correction on individual sensors, with the

correction efficacy remaining robust across seasonal environmental changes. We further analyzed the daily RMSE of the

SENSE-IAP relative to Picarro during 30 months of co-located observation. As shown in Fig. 6a, the daily RMSE of one

sensor (pi688-K30) ranged from 1.5 to 4.0 ppm throughout the observation period, with the light blue shadow representing225

the monthly mean ± standard deviation. The average and median of daily RMSEs for this sensor were less than 2.0 ppm (Fig.

6b), except for an increase to higher than 2 ppm in summer (dark green). Compared to Picarro, the consistency of

SENSE-IAP was better in winter, with an RMSE below 2.0 ppm on most days. Except for a few sensors exhibiting slightly

higher RMSEs (approximately 3.0 ppm) in spring and autumn (pi732-K30), the daily RMSEs of the six sensors showed no

significant seasonal variation (Fig. 6b).230
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Figure 6. (a) The time series of daily RMSEs for hourly CO2 concentration relative to Picarro (purple points) from June

2022 to Dec 2024, with a monthly rolling mean (blue line and shadow). (b) Box plot of the daily RMSEs of all six sensors

across different seasons. Sensors from the same instrument are represented in the same colors (spring: dark pink/pink;

summer: dark green/green; autumn: orange/yellow; and winter: dark blue/blue). Within each box, the red line indicates the235

mean value, while the blue dashed line represents the median values.

5. Performance of typical long-term drift and correction method

After environmental correction, the six SENSE-IAP sensors were co-located with Picarro synchronously for over 30

months. As shown in Fig. 7, two types of long-term drift were identified: 1) a downward drift trend and 2) a seasonal drift

cycle. While the environmental correction system effectively corrects the impact of diurnal environmental changes,240

significant errors occurred in sensors due to the two types of long-term drift. Without the long-term drift calibration

algorithm, the bias of SENSE-IAP could reach 27.9 ppm, with an RMSE of approximately 28.1 ppm (Fig. 7).

During the observation period, all six sensors exhibited long-term downward drifts ranging from 0.1 to 1.2 ppm per

month (ppm/mo) (Fig. 7 and Table 1). Among the six sensors deployed in this study, only pi736 K30_3 showed a drift trend

of less than 0.1 ppm/mo (Table 1). For sensors such as pi688-K30 and pi688-K30_2, the ΔCO2 displayed a continuous245

downward trend over the 30 months, with slopes of 1.2 and 1.0 ppm/mo, respectively (Table 1). Notably, the drift trends for

these sensors did not show significantly stabilization over time.
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In addition to the downward drift trend, sensors like pi688-K30_3 and pi736-K30 exhibited varying seasonal cycle

trends. After six months of deployment, these sensors showed RMSEs of 25.3 and 24.8, respectively (Fig. 7). However, after

more than one year of observation, the impact of seasonal drift decreased, and the errors caused by long-term drift were250

highlighted, resulting in reduced RMSEs as 17.3 and 10 ppm, respectively.

Figure 7: Time series of ΔCO2 for the six sensors at the Beijing-IAP from June 2022 to Dec 2024 (black), with the monthly

rolling mean (yellow line). The gray shadow represents the one-month time range used to evaluate the RMSE and bias for255

each sensor after half a year, one year, and two years of deployment.

From the perspective of drift magnitude, a significant bias of 5 ppm (approximately 1% of the ambient CO2

concentration) typically occurred within 3-10 months after calibration, with most cases observed within 5 months. The

seasonal drift cycle occurred on a six-month scale, with maximum errors typically occurring in winter and summer.
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Therefore, we recommend that the long-term drift calibration frequency of SENSE-IAP should be no less than three months260

and no longer than six months. In addition, drift calibration should be performed at least once during both winter and

summer seasons. If the target monitoring accuracy is within 3 ppm, the drift calibration frequency should be at least every

two months, as a 3-ppm bias typically develops within 2-5 months.

Table 1. The Long-term drift trend of six sensors (Unit: ppm/mo)265

SENSE-IAP pi688 pi736

Slope (ppm/mo) s1 s2 s3 s1 s2 s3

drift in the first year -1.2 -1.0 -1.4 -0.6 -1.1 -0.1

drift in the second year -1.2 -0.5 -0.2 -1.3 0.1 -0.1

According to functions 6-7, we illustrate our long-term drift calibration method by focusing on the first year of

observation. At the start of the observation period (Jun 2022), we adjusted the baseline of the six sensors. We designated the

initial calibration time point as Scor for the first observation period (Jun 2022 to Jan 2023). The inflection point of the drift

trend in Feb 2023 was identified as Ecor for the first period and as Scor for the second period of the observation (Jan 2023 to270

Sep 2023). The Ecor for the second period was set to Sep 2023 in this study. We applied the linear calibration method

between these two time points for both periods of the drift trend. After calibration, the CO2 concentrations from the six

sensors showed strong consistency with the Picarro, with an RMSE ranging from 2.4-3.0 ppm (Fig. 8).
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Figure 8: (a) Comparison of hourly CO2 concentrations measured by six sensors and Picarro at Beijing- IAP from June 2022275

to Dec 2024; (b) the time series of ΔCO2; (c) scatter plot of SENSE-IAP and Picarro; (d) histogram plot of the ΔCO2.

It should be noted that due to the loose connection of ventilation pipeline between Jul 2023 to Mar 2024, the CO2

concentration measured by pi736 and Picarro were not strictly synchronized. This issue led to a relatively lower short-term

monitoring accuracy during this period, primarily due to the lag effect caused by air diffusion. To assess the actual hourly

monitoring accuracy of SENSE-IAP, we excluded data from this period. Without this exclusion, the RMSE for pi736 would280

have been 3.9-4.5 ppm (Fig. S3). However, to ensure the completeness and robustness of the long-term drift analysis, we

retained samples from this period, allowing for a more comprehensive evaluation of drift trends over time.

6. Comparison of data quality across multiple levels over a long-term scale

As previously mentioned, the correction system effectively corrected the sensors’ short-term environmental dependence.

By applying a linear calibration method at least every three months, we can calibrate the time-dependent drift of LCSs and285
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resolve residual seasonal cycles that the environmental correction system cannot fully resolve. This seasonal variation is

prominently reflected in the original electrical signal (raw signal). As shown in Figure S4(b), we eliminated the influence of

short-term environment changes through a 24-hour running mean, revealing that the seasonal drift cycle in the raw signal can

reach up to 100ppm, with an RMSE of 38.2 and a bias of -21.1 ppm (Table 2).

The defining characteristic of medium-precision low-cost sensors is the presence of long-term drift. This drift, which290

exhibits a downward trend, is observed in all sensors, with variations only in the drift rate (Fig.S5). Long-term drifts resulted

in an RMSE of 15.8 and a bias of -12.0 for the LCS, respectively (Table 2). Although seasonal cycle does not significantly

alter the overall trend of long-term drift, seasonal environmental variations can introduce errors of up to 25 ppm if baseline

calibration are performed only annually (Fig. 7). Therefore, we recommend that baseline calibration be conducted at least

every six months, ideally during both winter and summer.295

The data provided by the SenseAir manufacture were corrected for temperature sensitivity using the default temperature

parameters. The long-term drift was calibrated using a so-called ABS algorithm, which employs periodic one-point

calibration in SenseAir, assuming that the minimum value of CO2 concentration is 400 ppm in fresh air (SenseAir-Corrected

data). However, due to the constant assumption of fresh air concentration, coupled with the carbon absorption of vegetation

in summer and the higher emissions in winter, the SenseAir-Corrected data exhibit a fluctuating trend of approximately 20300

ppm, with higher values in summer and lower values in winter. Consequently, the bias of SenseAir-Corrected data can be

-3.3±1.4 ppm, with an RMSE of 12.1±2.0 ppm (Fig. S6, Table 2). In contrast, the drift-calibrated SENSE-IAP data

demonstrate a much smaller bias (0.8±0.4 ppm) and an 80% improvement in accuracy, with an RMSE of 2.4±0.2 ppm

(Fig.S7, Table 2).
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Table 2: Evaluation parameters of the CO2 concentration measured by K30 sensors compared to those from Picarro,

including SenseAir-Corrected values, Raw signal, and SENSE-IAP at the Beijing-IAP from June 2022 to December 2024

(unit: ppm).

Data Type SenseAir-Corrected Raw signal SENSE-IAP-Env-Corrected SENSE-IAP-Env+Drift-Corrected

Sensors RMSE Bias RMSE Bias RMSE Bias RMSE Bias

Pi688 K30 15.9 -5.7 34.4 -20.2 20.1 -16.9 2.2 0.1

Pi688 K30_2 10.1 -3.1 35.1 -19.0 15.7 -13.6 2.4 1.3

Pi688 K30_3 10.2 -3.3 45.2 -24.2 21.5 -20.0 2.3 0.5

Pi736 K30 10.8 -1.1 22.0 -11.8 13.5 -3.5 2.6 1.1

Pi736 K30_2 13.0 -2.6 38.4 -23.0 14.3 -10.8 2.8 1.0

Pi736 K30_3 12.5 -4.2 53.9 -28.1 9.8 -7.0 2.2 0.7

Mean 12.1 -3.3 38.2 -21.1 15.8 -12.0 2.4 0.8

SD 2.0 1.4 9.9 -5.1 4.0 5.6 0.2 0.4

*According to the statistical results of 24-hour running means.

7. Seasonal drift cycle effects on SENSE-IAP310

As shown in Fig. S8, the seasonal variations observed before instrument linear calibration were correlated with T, RH and P.

The ΔCO2 between pi736-K30 and Picarro significantly correlated with all three environmental factors, with r values of

-0.58, -0.46, and 0.33 against T, RH and P, respectively. In contrast, the relationship between pi688-K30_3 and

environmental factors was opposite to that of pi736-K30, with r values of 0.33, 0.5, and -0.6 against T, RH and P,

respectively. Considering seasonal phase differences between CO2 concentration changes and environmental factors, this315

seasonal deviation was likely attributable not only to insufficient environmental compensation but also to the influence of

seasonal effects on the instrument’s physical properties. For instance, changes in the sensor’s optical cavity size caused by

thermal expansion and cold contraction can change the optical path-lengths, subsequently affecting the pressure within the

optical cavity and the strength of infrared CO₂ absorption (Yao et al., 2023). However, this hypothesis cannot fully explain

why the two sensors, pi688 K30_3 and pi736 K30, exhibited opposite drift directions during the same season.320

8. Conclusions

We evaluated low-cost NDIR CO2 sensors using Picarro as a reference instrument. Our environmental correction

system effectively corrected the impact of short-term daily environmental changes by assigning unique environmental
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sensitivity parameters to each sensor. This approach reduces the short-term RMSE from 5.9±1.2 ppm for SenseAir to

1.6±0.5 ppm for SENSE-IAP. The correction system demonstrates robustness against seasonal environmental variations,325

maintaining a daily RMSE of 1-3 ppm.

Based on a 30-month observation, we recommend that the calibration frequency for long-term drifts not exceed six

months. For optimal performance and to ensure the target monitoring accuracy remains within 1% of the ambient CO2

concentration, a three-month calibration interval is recommended. If standard instruments, standard gases (which are

generally easier to obtain), or other reliable concentration references such as model simulations are available, long-term drift330

can be linearly corrected at the seasonal scale.

Consequently, after deployment, even with significant environmental changes around the instrument, there is no need to

frequently bring the instruments back to the laboratory for re-correction of environmental impacts. After the long-term drift

calibration, the RMSE of SENSE-IAP remains 2.4 ± 0.2 ppm even after 30 months of operation. This performance enables

long-term deployment of the instruments, significantly reducing the maintenance costs associated with LCS.335
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